SOLUTIONS

- 1. (b) $a = x \times x \times x \times y \times y$ and $b = xy \times y \times y$ \therefore HCF $(a, b) = x \times y \times y = x \times y^2 = xy^2$
- 2. (c), Let α and β be the roots of the equation

$$x^2 + px + 1 - p = 0$$

Let $\alpha = 1 - p$ (given)

$$\alpha + \beta = \frac{-p}{1}$$
$$1 - p + \beta = -p$$

$$\Rightarrow$$
 $\beta = -1$

Putting $\beta = -1$ in $x^2 + px + 1 - p = 0$, we get

$$\therefore \qquad \qquad \alpha = 1 - 1 = 0$$

Roots of equation are 0 and -1

3. (*c*), We have $p(x) = ax^2 + bx + c$

Putting x = -1, we get

$$p(-1) = a - b + c = (a + c) - b = b - b = 0$$

(As $a + c = b$)

 \therefore - 1 is zero of p(x)

Let other zero be β.

$$\therefore \qquad (-1)\beta = \frac{c}{a} \qquad \text{(Product of roots)}$$

$$\beta = -\frac{c}{a}$$

 $2472 = 2^3 \times 3 \times 103$ 4. (c)

$$1284 = 2^2 \times 3 \times 107$$

$$\therefore \qquad LCM = 2^3 \times 3^2 \times 5 \times 103 \times 107$$

$$\therefore \qquad N = 2^2 \times 3^2 \times 5 = 180$$

5. (c)
$$(3-0)^2 + (\sqrt{3}-0)^2 = (3-0)^2 + (k-0)^2$$

$$\Rightarrow \qquad 3 = k^2 \Rightarrow k = \pm \sqrt{3}$$

$$\Rightarrow \qquad \qquad k = -\sqrt{3}$$

6. (b), Here PBA is a secant. We can draw only two tangents which are parallel to secant PBA

7. (c), $(\csc A - \sin A)(\sec A - \cos A)(\tan A + \cot A)$ $= \left(\frac{1}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right) \left(\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}\right)$

$$= \frac{\cos^2 A}{\sin A} \cdot \frac{\sin^2 A}{\cos A} \cdot \frac{1}{\sin A \cdot \cos A} = \frac{\cos^2 A \sin^2 A}{\sin^2 A \cos^2 A} = 1$$

8. (d), $\sqrt{3}\sin\theta - \cos\theta = 0$

$$\sqrt{3}\sin\theta = \cos\theta$$

$$\tan \theta = \sqrt{3}$$

$$\tan \theta = \tan 60^{\circ} \Rightarrow \theta = 60^{\circ}$$

- 9. (c) ::
 - EF | AB.
- 10. (c) :: $\triangle ABC \sim \triangle EDF$

Then,
$$\frac{AB}{ED} = \frac{BC}{DF} = \frac{AC}{EF}$$

$$\Rightarrow$$
 AB.DF = ED.BC

or
$$AB.EF = AC.ED$$

or
$$BC.EF = DF.AC$$

11. (c)

AB =
$$\sqrt{(5-0)^2 + (0-3)^2}$$

= $\sqrt{25+9} = \sqrt{34}$ units

12. (b), Let three terms in AP are a + d, a, a - d

$$\therefore a + d + a + a - d = 24 \Rightarrow a = 8$$

$$\therefore$$
 Middle term = $a = 8$

13. (a), Here, a = 22, d = 19 - 22 = -3

Let a_n be its first negative term.

$$\Rightarrow a_n < 0$$

$$\Rightarrow a + (n-1)d < 0$$

$$\Rightarrow$$
22 + (n - 1)(-3) < 0

$$\Rightarrow$$
 22 - 3n + 3 < 0

$$\Rightarrow$$
 $-3n < -25$

$$\Rightarrow$$
 3n > 25

$$\Rightarrow n > \frac{25}{3}$$

∴9th term is the first negative term of the given AP.

- 14. (d)
- 15. (a), Let the side of a solid cube be x units

 Volume of a solid cube = x^3 cubic units

 This solid cube is cut into 27 small cubes of equal volume.

Volume of one small cube $=\frac{1}{27}x^3$ cubic units

 \Rightarrow Side of one small cube = $\frac{1}{3}x$ units.

Now, surface area of a solid cube = $6 \times x^2$ sq units Surface area of one small cube = $6 \times \frac{1}{9}x^2$ sq units

∴ Surface area of a solid cube
$$\frac{6x^2}{\text{Surface area of one small cube}} = \frac{6x^2}{6 \times \frac{1}{9}x^2}$$

$$\Rightarrow \text{Required ratio} = 9:1$$

- **16.** (c)
- 17. (d) : $P(E) + P(\overline{E}) = 1$: q = 1
- 18. (a) $\because \sin \theta$ and $\cos \theta$ are the roots,

$$\sin \theta + \cos \theta = -\left(\frac{-b}{a}\right)$$
and $\sin \theta \cdot \cos \theta = \frac{c}{a}$

$$\Rightarrow (\sin \theta + \cos \theta) \cdot \left(\frac{b}{a}\right)^2$$

$$\Rightarrow \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cdot \cos \theta = \frac{b^2}{a^2}$$

$$\Rightarrow 1 + 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2}$$

$$\Rightarrow a^2 + 2ac = b^2 \Rightarrow b^2 - a^2 = 2ac$$

- **19.** (c)
- **20.** (b) is correct option.
- 21. Let the present age of Aftab be x years and the present age of his daughter be y years.

According to question.

$$x - 7 = 7(y - 7)$$

$$\Rightarrow x - 7y = -42 \qquad ...(i)$$
and
$$x + 3 = 3(y + 3)$$

$$\Rightarrow x - 3y = 6 \qquad ...(ii)$$

Thus, the algebraic representation is given by (i) and (ii).

22. Given: QR is tangent at Q to a circle having centre at P and chord AQ \parallel PR

To prove: BR is tangent at B.

Proof: We have AQ || PR

$$\therefore$$
 $\angle 1 = \angle 4$ (Corresponding angles) ...(i)

and
$$\angle 2 = \angle 3$$
 (Alternate interior angles) ...(ii)

Also,
$$\angle 1 = \angle 2$$

From (i), (ii) and (iii), we get

$$\angle 3 = \angle 4$$
 ...(*iv*)

In ΔPQR and ΔPBR,

$$PR = PR$$
 (Common)

$$\angle 3 = \angle 4$$
 (From (iv)

$$\therefore \quad \Delta PQR \cong \Delta PBR \qquad (SAS congruence rule)$$

$$\Rightarrow \angle PBR = \angle PQR \tag{CPCT}$$

Now, $\angle PQR = 90^{\circ}$ [QR is tangent and PQ is radius]

$$\therefore$$
 $\angle PBR = 90^{\circ}$

$$\Rightarrow$$
 BR is tangent at B.

Hence proved.

23. Given: ABCDEF hexagon circumscribe a circle and touches at G, H, I, J, K, L.

To prove:
$$AB + CD + EF = BC + DE + FA$$

Proof: Hexagon ABCDEF touches a circle at G, H, I, J, K, L. So, from the external point, tangents drawn on the circle are equal in length.

If A is external point and AG and AL are tangents, so

Adding
$$(i)$$
, (ii) , (iii) , (iv) , (v) and (vi) , we get

$$AG + BG + CI + DI + EK + FK$$

$$= AL + BH + CH + DJ + EJ + FL$$

$$\Rightarrow$$
 (AG + BG) + (CI + DI) + (EK + FK)

$$= (BH + CH) + (JD + EJ) + (FL + AL)$$

24. Let the 1st term of AP be a and the common difference be d

A.T.Q.
$$a_5 = 0$$

 $\Rightarrow a + 4d = 0 \Rightarrow a = -4d$...(i)
Now, $a_{33} = a + 32d$
 $\Rightarrow a_{33} = -4d + 32d$ [(using (i)]
 $\Rightarrow a_{33} = 28d$...(ii)
Also, $a_{19} = a + 18d$
 $\Rightarrow a_{19} = -4d + 18d$...[using (i)]
 $\Rightarrow a_{19} = 14d$

On multiplying with 2 on both the sides, we get

$$\Rightarrow \qquad 2 \times a_{19} = 2 \times 14d = 28d \qquad \dots(iii)$$

From (ii) and (iii)

$$a_{33} = 2 \times a_{19}$$
 Hence proved.

OR

Let there are (2n + 1) stones. The middle stone is at B. Let n stones are on one side of B and n stones on other side of B.

Let man started from A.

Distance covered from A to B = $10 \times n$ m = 10n

Distance covered to carry IInd stone

$$= 2 \times (n-1) \times 10$$
 metres

Distance covered to carry IIIrd stone

$$= 2 \times (n-2) \times 10$$
 metres

and so on.

 \therefore Total distance covered to carry n stones from this side of B

$$= 10n + 2 \times (n - 1) \times 10 + 2 \times (n - 2) \times 10 + \dots + 2 \times 10$$

$$= 10[n + 2(n - 1) + 2(n - 2) + \dots + 2]$$

$$= 10\{n + 2[(n - 1) + (n - 2) + \dots + 1]\}$$

$$= 10\{n + 2 \times \frac{n - 1}{2} \times [(n - 1) + 1]\}$$

$$= 10[n + (n - 1)n] = 10[n + n^2 - n] = 10n^2$$

Now, distance covered to collect n stones from other side of B will be 10n metres more than this distance as the person has to move from B to C to pick the stone at other end and come back.

 \therefore Distance covered to collect n stones from other $side = 10n^2 + 10n$

Total distance covered

$$= 10n^2 + 10n^2 + 10n = 20n^2 + 10n$$

According to question,

$$20n^{2} + 10n = 3000$$

$$\Rightarrow 2n^{2} + n - 300 = 0$$

$$\Rightarrow 2n^{2} + 25n - 24n - 300 = 0$$

$$\Rightarrow n(2n + 25) - 12(2n + 25) = 0$$

$$\Rightarrow (n - 12) (2n + 25) = 0$$

$$\Rightarrow n - 12 = 0 \text{ or } 2n + 25 = 0$$

$$\Rightarrow n = 12 \text{ or } n = \frac{-25}{2} \text{ (rejecting)}$$

 \therefore Total number of stones = $2n + 1 = 2 \times 12 + 1 = 25$

25. We have
$$\frac{\cos \alpha}{\cos \beta} = m$$
 and $\frac{\cos \alpha}{\sin \beta} = n$

Consider LHS =
$$(m^2 + n^2) \cos^2 \beta$$

= $\left(\frac{\cos^2 \alpha}{\cos^2 \beta} + \frac{\cos^2 \alpha}{\sin^2 \beta}\right) \cos^2 \beta$
= $\left(\frac{\cos^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta}{\cos^2 \beta \sin^2 \beta}\right) \cos^2 \beta$
= $\frac{\cos^2 \alpha (\sin^2 \beta + \cos^2 \beta)}{\sin^2 \beta}$
= $\frac{\cos^2 \alpha}{\sin^2 \beta} = \left(\frac{\cos \alpha}{\sin \beta}\right)^2 = n^2 = \text{RHS}$

$$\therefore$$
 LHS = RHS. Hence proved.

 $\frac{\cos^2\theta}{\cot^2\theta - \cos^2\theta} = 3$ $\frac{\cos^2\theta}{\frac{\cos^2\theta}{\cos^2\theta} - \cos^2\theta} = 3 \Rightarrow \frac{\cos^2\theta \sin^2\theta}{\cos^2\theta (1 - \sin^2\theta)} = 3$

$$\frac{\sin^2 \theta}{\cos^2 \theta} = 3 \Rightarrow \tan^2 \theta = 3$$

$$\Rightarrow \tan \theta = \sqrt{3} = \tan 60^{\circ} \Rightarrow \theta = 60^{\circ}$$

26. Let us suppose that $3 - 2\sqrt{5}$ is rational.

 $\therefore 3 - 2\sqrt{5}$ can be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

$$\Rightarrow 3 - 2\sqrt{5} = \frac{p}{q} \Rightarrow 3 - \frac{p}{q} = 2\sqrt{5}$$

$$\Rightarrow \frac{3q-p}{q} = 2\sqrt{5} \Rightarrow \frac{3q-p}{2q} = \sqrt{5}$$

Since p and q are integers, we get $\frac{3q-p}{2q}$ is rational, and so $\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational.

$$\therefore \frac{3q-p}{2q} \neq \sqrt{5}$$

So, our supposition is wrong.

Hence, $3 - 2\sqrt{5}$ is irrational.

27.
$$\frac{2x}{x-3} + \frac{1}{2x+3} + \frac{3x+9}{(x-3)(2x+3)} = 0$$

$$\Rightarrow \frac{2x(2x+3) + x - 3 + 3x + 9}{(x-3)(2x+3)} = 0$$

$$\Rightarrow 4x^2 + 10x + 6 = 0$$

$$\Rightarrow 2x^2 + 5x + 3 = 0$$

$$\Rightarrow (x+1)(2x+3) = 0$$

$$\Rightarrow x = -1 \text{ or } x = \frac{-3}{2}$$

When $x = \frac{-3}{2}$, given equation is not defined.

$$\therefore$$
 $x = -1$

28. Let total number of pottery articles produced in a particular day be x.

Cost of production per article = $\frac{90}{x}$

ATQ
$$2x + 3 = \frac{90}{x}$$

$$\Rightarrow x (2x + 3) = 90$$

$$\Rightarrow 2x^2 + 3x = 90$$

$$\Rightarrow 2x^2 + 3x - 90 = 0$$

$$\Rightarrow (2x + 15) (x - 6) = 0$$

$$\Rightarrow 2x = -15 \text{ or } x - 6 = 0$$

$$\Rightarrow x = -\frac{15}{2} \text{ (rejected) or } x = 6$$

 \therefore Number of articles produced in a particular day = 6

Cost of production per article = $\frac{90}{6}$ = ₹ 15

OF

Given;
$$a_{11} = 38 \text{ and } a_{16} = 73$$

 $\Rightarrow a + 10d = 38 \text{ and } a + 15d = 73$
 $\Rightarrow a + 15d - a - 10d = 73 - 38$
 $\Rightarrow 5d = 35$

⇒
$$d = 7$$

∴ $a_{11} = a + 10 \times 7 = 38$
⇒ $a = 38 - 70 = -32$
∴ $a_{31} = a + 30d = -32 + 30 \times 7$
 $= -32 + 210 = 178$

29. Given sec $\theta = x + \frac{1}{4x}$

Squaring both sides, we get

$$\sec^2\theta = \left(x + \frac{1}{4x}\right)^2$$

$$\Rightarrow \qquad \sec^2\theta = x^2 + \frac{1}{16x^2} \div \frac{1}{2}$$

$$\Rightarrow \qquad \tan^2\theta = x^2 + \frac{1}{16x^2} - \frac{1}{2} = \left(x - \frac{1}{4x}\right)^2$$

$$\Rightarrow \qquad \tan\theta = \left(x - \frac{1}{4x}\right) \text{ or } -\left(x - \frac{1}{4x}\right)$$

Consider LHS = $\sec \theta - \tan \theta$

$$= x + \frac{1}{4x} - x + \frac{1}{4x}$$
or $x + \frac{1}{4x} + \left(x - \frac{1}{4x}\right) = \frac{1}{2x}$ or $2x = \text{RHS}$

 $\therefore LHS = RHS \qquad Hence proved$

30. Given: In a quadrilateral PQRS, A, B, C and D are the mid-points of sides PQ, QR, RS and SP respectively.

To prove: ABCD is a parallelogram.

Construction: Join PR.

Proof: In Δ PQR, A and B are mid-points of sides PQ and QR respectively

:. AB || PR (Using mid-point theorem) ...(i)

In Δ PSR, D and C are mid-points of sides PS and SR respectively.

 \therefore DC || PR (Using mid-point theorem) ...(ii)

From (i) and (ii), we get

AB || DC

Similarly, we have AD || BC

- \therefore In quadrilateral ABCD, AB \parallel CD and AD \parallel BC
- .. ABCD is a parallelogram, because both pairs of opposite sides of a quadrilateral ABCD are parallel.

OR

AB touches at P and BC, CD and DA touch the circle at Q, R and S.

Construction: Join OA, OB, OC, OD and OP, OQ, OR, OS

[OA bisects ∠POS]

$$\angle 4 = \angle 3$$
;

$$\angle 5 = \angle 6$$
;

$$\angle 8 = \angle 7$$

$$2[\angle 1 + \angle 4 + \angle 5 + \angle 8] = 360^{\circ}$$

$$(\angle 1 + \angle 8 + \angle 4 + \angle 5) = 180^{\circ}$$

$$\angle AOD + \angle BOC = 180^{\circ}$$

Similarly $\angle AOB + \angle COD = 180^{\circ}$

Hence, opposite sides of quadrilateral circumscribing a circle subtend supplementary angles at the centre of a circle.

31. Total number of objects = 12 * 8 + 10 = 30

Number of blue triangles = 6

Number of green triangles = 8 - 6 = 2

Number of green rectangles = 3

Number of blue rectangles = 12 - 3 = 9

Number of blue rhombuses = 3

Number of green rhombuses = 10 - 3 = 7

- (i) Probability that one piece lost is a rectangle $= \frac{12}{30} = \frac{2}{5}$
- (ii) Probability that one piece lost is a triangle of green colour = $\frac{2}{30} = \frac{1}{15}$
- (iii) Probability that one piece lost is a rhombus of blue colour = $\frac{3}{30} = \frac{1}{10}$

32. The solution table for 2x - 3y + 6 = 0 is:

x	0	-3	3
у	2	0	4

The solution table for 2x + 3y - 18 = 0 is:

x	0	9	6
у	6	0	2

Coordinates of the vertices of a triangle are A(0, 2), B(3, 4) and C(0, 6)

∴ Area of
$$\triangle ABC = \frac{1}{2}$$
 base × height

$$= \frac{1}{2} \times AC \times BD = \frac{1}{2} \times 4 \times 3 = 6 \text{ sq units}$$

Let the digit at unit's place be x and the digit at ten's place be y

$$\therefore$$
 Required number = $10y + x$

When the digits are reversed, the number becomes 10x + y

According to the question,

$$8(10y + x) = 3(10x + y)$$

$$\Rightarrow 80y + 8x = 30x + 3y$$

$$\Rightarrow 77y - 22x = 0 \Rightarrow 7y - 2x = 0 \quad ...(i)$$
Also, $x - y = 5$ (keeping $x > y$) ...(ii)

Multiplying (ii) by 2 and adding to (i), we get

$$v = 2$$

Putting y = 2 in (ii), we get

$$x - 2 = 5$$

$$\Rightarrow$$
 $x = 7$

 \therefore Required number $10y + x = 10 \times 2 + 7 = 27$

33. Given: A quadrilateral ABCD, whose diagonals intersect at O.

and

$$\frac{AO}{BO} = \frac{CO}{DO}$$
 or $\frac{AO}{OC} = \frac{BO}{DO}$

To Prove: ABCD is a trapezium.

Construction: Draw EO || AB

Proof: In ∆ABC,OE || AB

$$\therefore \frac{AO}{OC} = \frac{BE}{EC}$$
 [By B.P.T.] ...(i)

But given that $\frac{AO}{OC} = \frac{BO}{DO}$

From equation (i) and (ii)

$$\frac{BO}{DO} = \frac{BE}{EC}$$

 \Rightarrow

OE || DC [By converse of B.P.T.]

...(ii)

OE \parallel AB and OE \parallel DC \Rightarrow AB \parallel DC

: ABCD is a trapezium.

34.

Radius of the circle = 10 cm

Central angle subtended by chord $AB = 60^{\circ}$

Area of minor sector OACB =
$$\frac{\pi r^2 \theta}{360^{\circ}}$$

= $\frac{22}{7} \times \frac{(10)^2 \times 60^{\circ}}{360^{\circ}}$
= $\frac{22}{7} \times \frac{10 \times 10}{6}$
= $\frac{1100}{21}$ cm²
= 52.38 cm²

Area of equilateral triangle OAB formed by radii and chord

$$= \frac{\sqrt{3}}{4}a^{2}$$

$$= \frac{\sqrt{3}}{4} \times (10)^{2}$$

$$= \frac{1.732}{4} \times 100$$

$$= 43.3 \text{ cm}^{2}$$

:. Area of minor segment ACBD

= Area of sector OACB - Area of triangle OAB

$$= (52.38 - 43.30) \text{ cm}^2$$

 $= 9.08 \text{ cm}^2$

Area of circle =
$$\pi r^2$$

= $\frac{22}{7} \times (10)^2$
= $\frac{22 \times 100}{7}$ cm²
= 314.28 cm²

: Area of major segment ADBE

= Area circle - Area of minor segment

$$= (314.28 - 9.08) \text{ cm}^2$$

$$= 305.20 \text{ cm}^2$$

OR

Radius of the circle = 45 cm

Number of ribs = 8

Angle between two consecutive ribs

$$= \frac{\text{central angle of the circle}}{\text{number of the sectors (ribs)}}$$
$$= \frac{360^{\circ}}{8}$$
$$= 45^{\circ}$$

Area between two consecutive ribs = Area of one sector of circle

$$= \frac{\pi r^2 \theta}{360^{\circ}}$$

$$= \frac{22}{7} \times \frac{45^{\circ} \times 45^{\circ} \times 45^{\circ}}{360^{\circ}}$$

$$= \frac{11 \times 45 \times 9 \times 5}{7 \times 4} \text{ cm}^2$$

$$= \frac{22275}{28} \text{ cm}^2$$

Classes	Frequency	Cumulative frequency
0 – 20	6	6
20 – 40	8	14
40 – 60	10	24
60 – 80	12	36
80 – 100	6	42
100 – 120	5	47
120 – 140	3	50
	n = 50	-

Median Class

$$\frac{n}{2} = 25$$

Median class = (60 - 80)

$$l = 60, f = 12, c.f. = 24, h = 20.$$

Median =
$$l + \frac{\frac{n}{2} - c \cdot f}{f} \times h$$

= $60 + \frac{25 - 24}{12} \times 20$
= $60 + \frac{1 \times 5}{3} = \frac{180 + 5}{3} = \frac{185}{3}$
= 61.6

Modal class = (60 - 80) as its frequency is 12

$$h = 20, l = 60, f_1 = 12, f_0 = 10, f_2 = 6.$$

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $60 + \frac{12 - 10}{2 \times 12 - 10 - 6} \times 20$
= $60 + \frac{2}{8} \times 20 = 65$

Now, Mode = 3 Median - 2 Mean

$$65 = 3 (61.6) - 2 Mean$$

$$2 \text{ Mean} = 184.8 - 65$$

$$2 \text{ Mean} = 119.8$$

$$\Rightarrow$$
 Mean = $\frac{119.8}{2}$ = 59.9

:. Mean =
$$59.9$$
; Median = 61.6 ; Mode = 65

- **36.** (i) $\sqrt{8}$ units (ii) $4\sqrt{2}$ units (iii) 1:2 **OR** 1:1
- 37. (i) Diameter of base of heap = 24 m Radius of base of heap = $\frac{24}{2}$ m = 12 m

Height of heap = 3.5 m

Let *l* be the slant height of heap

$$l = \sqrt{r^2 + h^2}$$

$$= \sqrt{(12)^2 + (3.5)^2}$$

$$= \sqrt{144 + 12.25} = \sqrt{156.25}$$

$$l = \sqrt{156.25} = 12.5 \text{ m}$$

- (ii) Canvas cloth required to cover the heap = πrl = $\frac{22}{7} \times 12 \times 12.5 = 471.42 \text{ m}^2$
- (iii) Volume of heap of wheat = $\frac{1}{3}\pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times 12 \times 12 \times 3.5$ = $22 \times 4 \times 12 \times 0.5 = 528 \text{ m}^3$

Volume of one bag = 0.48 m^3

Number of bags required =
$$\frac{528}{0.48}$$
 = 1100

- 38. (i) $\angle ACD = \angle CAX$ (Alternate angles) $\therefore \angle ACD = 45^{\circ}$
 - (ii) In right-angled $\triangle ADC$, $\tan 45^{\circ} = \frac{AD}{CD} \Rightarrow CD = AD = 100 \text{ m}$
 - (iii) In right-angled ΔADB,

$$\tan 30^{\circ} = \frac{AD}{DB}$$
 {:: $\angle ABD = \angle BAY$ }
 $BD = AD \cot 30^{\circ} = 100 \times \sqrt{3} \text{ m}$

OR

In \triangle ADC,

$$\sin 45^\circ = \frac{AD}{AC} \Rightarrow AC = AD \times \sqrt{2} = 100\sqrt{2} \text{ m}$$

$$\left\{ \sin 45^\circ = \frac{1}{\sqrt{2}} \right\}$$